Engine idle-speed system modelling and control optimization using artificial intelligence
نویسندگان
چکیده
This paper proposes a novel modelling and optimization approach for steady state and transient performance tune-up of an engine at idle speed. In terms of modelling, Latin hypercube sampling and multiple-input and multiple-output (MIMO) least-squares support vector machines (LS-SVMs) are proposed to build an engine idle-speed model based on experimental sample data. Then, a genetic algorithm (GA) and particle swarm optimization (PSO) are applied to obtain an optimal electronic control unit setting automatically, under various user-defined constraints. All of the above techniques mentioned are artificial intelligence techniques. To illustrate the advantages of the MIMO LS-SVM, a traditional multilayer feedforward neural network (MFN) is also applied to build the engine idle-speed model. The modelling accuracies of the MIMO LS-SVM and MFN are also compared. This study shows that the predicted results using the estimated model from the LS-SVM are in good agreement with the actual test results. Moreover, both the GA and PSO optimization results show an impressive improvement on idle-speed performance in a test engine. The optimization results also indicate that PSO is more efficient than the GA in an idle-speed control optimization problem based on the LS-SVM model. As the proposed methodology is generic, it can be applied to different engine modelling and control optimization problems.
منابع مشابه
Optimal Idle Speed Control of a Natural Aspirated Gasoline Engine Using Bio-inspired Meta- heuristic Algorithms
In order to lowering level of emissions of internal combustion engines (ICEs), they should be optimally controlled. However, ICEs operate under numerous operating conditions, which in turn makes it difficult to design controller for such nonlinear systems. In this article, a generalized unique controller for idle speed control under whole loading conditions is designed. In the current study, in...
متن کاملAn experimental study of the management system in an ignition engine to reduce the emissions
The present study aims at investigating the amount of exhaust gases emissions of a 4-cylinder gasoline-ignition engine. An experimental study of an ignition engine management system has been conducted for emissions optimization, using Winols specialized software. In order to achieve a steady state conditions in the experiments, the temperature of the water and engine oil before each test reache...
متن کاملOptimizing speed and angle control of stepping motor by using field oriented control
In the present study, field oriented control of step motor implementation has been analyzed sothat it can make a Sensorless control. Efficiency and Facilities of step motor is more than othertypes of electromotor. Therefore, the numbers of mechanisms and different types of turning canbe made into them. Also controlling these motors is easier than other available motors. Steppingmotor has been d...
متن کاملImprovement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization
In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...
متن کاملDesign of ON-Line Tuned Idle Speed Controller for an Automotive Engine By Using NCD
This paper attempts to tune any controller without the knowledge of mathematical model for the system to be controlled. For that purpose, the optimization algorithm of MATLAB / Nonlinear Control Design Blockset (NCD) is adapted for On-line tuning for controller parameters. To present the methodology, a PID controller is verified with the physical plant using the engine speed control System wher...
متن کامل